Excavators For Sale in Maine

The Howland Research Forest is a 558 acre tract of mature, lowland evergreen forest located in central Maine, west of the town of Howland.  Red spruce, Eastern hemlock, and white cedar trees dating back to before the Civil war dominate the forest canopy.  Stands contain large amounts of woody biomass, frequent standing and downed dead trees, and pit-and-mound topography created by tree tip-over. The tract has tremendous ecological value having escaped the mechanized logging that characterizes the northern forests of Maine.  This escape came about in part by the designation of the land as research forest in 1986 by the former owner, International Paper.  The forest has played host to researchers from throughout the country serving first as a vital site in studies of the impact of acid rain on ecosystems and more recently in research into how forests remove carbon dioxide, the principal greenhouse gas, from the atmosphere and store it in plant biomass. The Howland Research Forest was purchased by Northeast Wilderness Trust in 2007, protecting the forest from any future logging activities. Outside of the central forest core at Howland is a considerably larger area of similar spruce-hemlock forest that is managed for commercial wood products.

Research at the site initially focused on atmospheric research followed by nutrient cycling and soil ecology studies. Howland was the center of the Forest Ecosystem Dynamics project run by NASA's Goddard Space Flight Center between 1989 and 1994. A description, research results, and remote sensing imagery from that study can be found here.

In 1996 measurements of forest carbon uptake and loss (carbon sequestration studies) began, and Howland now has one of the longest records of carbon flux measurement in the world.  An important result from these studies is the finding that this "over-mature" forest is still actively sequestering large quantities of carbon from the atmosphere.  The Howland Forest is a founding member of the AmeriFlux and FLUXNET research networks.

Scientific research at the Howland Forest is carried out by broad partnership consisting of university researchers from Maine, New Hampshire, Georgia, Colorado, and Harvard, Federal scientists from the US Forest Service, NASA, and USGS, and private research organizations such as the Woods Hole Research Center.  Financial support for these activities comes from the National Science Foundation, NASA, and the U.S. Department of Energy. The right excavator attachements for sale can help make the difference in making a budget.

Excavation Contractors in Maine

The Howland Forest research site is located about 35 miles north of Bangor at 45° 12' N, 68° 44' W at an elevation of 60 m within a spruce-hemlock-fir stand approximately 19.5 m in height. The site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained.

Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity. Additionally, almost 450 ha of the surrounding area consists of bogs and other wetlands. Generally, the soils throughout the forest are glacial tills, acid in reaction, with low fertility and high organic composition. These soils primarily lie within three suborders: orthods, orchrepts, and aquepts. The climate is chiefly cold, humid, and continental and the region exhibits a snowpack of up to 2 m from December through March.

This site was established by the University of Maine, with the cooperation and collaboration of International Paper in 1986 during the EPA MCCP program and the NAPAP program, and is currently supported by the USDA Forest Service through its Global Change Program, the Department of Energy (DOE) through theNIGEC Program and the DOE Office of Science, and the National Science Foundation (NSF).The site is well documented in terms of historical characterization of forest species types and age, other species types in the canopy and at the ground, and structural density vertically within the canopy.  Atmospheric and environmental parameters from below the soil, through the forest canopy and above the treetops have been monitored continuously since 1987.

Originally as part of the MCCP and NAPAP programs and continuously since 1987, in collaboration with NOAA's Atmospheric Turbulence and Diffusion Division [ATDD] at Oak Ridge, TN we have been monitoring and evaluating wet and dry deposition of important air pollutants to landscapes using simple instrumentation and inferential modeling.

Since 1990 The Woods Hole Research Center [WHRC] has been an active collaborator with University of Maine personnel at the Howland site. Together we have jointly installed and maintained a CO2profile measurement system collecting continuous data at four elevations within and above the canopy. In addition, we currently collaborate in assessing soil and coarse woody debris CO2 fluxes.

Since 1988, NASA Goddard's Biospheric Sciences Branch has played an active role in collaborating with the University of Maine in remote sensing research at Howland and the modeling of forest ecosystem response to global change issues (Forest Ecosystems Dynamics [FED] Project). This work has emphasized the detection of features and patterns at local to regional spatial scales and the exploration of mechanisms that cover temporal scales ranging from seconds to centuries. This Maine-NASA collaboration continues as the FED program assesses ecosystem patterns in a linked modeling framework involving models of forest succession, soil processes, and energy exchange.  Our ongoing measurements of ecosystem function complement the existing structural databases and allow much more rigorous tests of the modeling framework. In addition, the models are expected to help pose further key questions relating to ecosystem function and carbon storage.

The University maintains an electrically-connected meteorological station at a 25 m walk-up meteorological tower and an adjacent field laboratory building located within a large spruce stand. Two new remote 30 m towers were erected in the late 1990's to increase spatial coverage of the forest system measurements.  These remote towers also provide site specific core measurements for specific carbon sequestration experiment projects.

Faculty and staff of the University's Department of Plant,Soil, and Environmental Sciences maintain the infrastructure providing continuous collection of atmospheric and soil parameters. Some of the most important and useful data sets include diurnal surface energy and mass budgets (net radiation, sensible heat flux, latent heat flux, CO2 flux, and heat storage), standard micrometeorological data, wet and dry chemistry, soil moisture, salinity and temperature, soil carbon stocks and soil chemical, microbiological and physical properties, stand biomass estimates from both ground-based inventories and radar images, allometric relationships for stand biomass components, a stem map by species, litter production, needle water potential and stomatal conductance, needle chemistry, and a continuous monitoring of CO2 and ozone concentrations within and above the forest canopy. We are sponsered by the best web designers in Maine and are proud to support their company and Maine SEO program

Server IP: